Monatshefte für Chemie 105, 1217-1227 (1974) © by Springer-Verlag 1974

Die Kristallstruktur von Ru₂Ge₃

Von

H. Völlenkle

Aus dem Institut für Mineralogie, Kristallographie und Strukturchemie der Technischen Hochschule Wien, Österreich

Mit 3 Abbildungen

(Eingegangen am 6. Juli 1974)

The Crystal Structure of Ru₂Ge₃

The crystal structure of Ru₂Ge₃ has been determined and refined by Fourier synthesis using pseudo-tetragonal X-ray data resulting from twinned crystals. The true symmetry is orthorhombic with space group Pnca- D_{2h}^{14} and the lattice parameters are: a = 5.718, b = 11.436 and c = 9.240 Å. Ru₂Ge₃ is a member of the Mn₁₁Si₁₉ structure family which is characterized by the occurrence of different compositions in the range TB_{2-x} ($x \le 0.75$, T = transition metal and B = group III or IV metal). The compounds Ru₂Si₃, Os₂Si₃, Os₂Ge₃, and Ir₂(Ga_{0.6}Ge_{0.4})₃ are isostructural.

Die Verbindung Ru₂Ge₃ wurde erstmals von Wallbaum¹ als Rutheniumdigermanid, RuGe₂, beschrieben. Raub und Fritzsche² ordneten der Phase die Zusammensetzung Ru₂Ge₃ zu und indizierten sie in Analogie zum isotypen Silicid Ru₂Si₃³ mit einer tetragonalen Zelle: a = 5,709 und c = 4,650 Å. In der Folge führten Einkristalluntersuchungen auf eine Verdoppelung der Gitterparameter der tetragonalen Zelle (a = 11,405 und c = 9,270 Å)⁴. Auf Grund der ungewöhnlichen Auslöschungsgesetze vermutete Schwomma⁵ jedoch, daß nur tetragonale Pseudosymmetrie vorliegt, die durch eine verzwillingte, niedriger symmetrische Zelle zustande kommt. Schliffuntersuchungen mit polarisiertem Licht erhärteten diese Vermutung, da sie in den einzelnen Kristalliten deutlich Zwillingslamellen erkennen ließen.

Das Rutheniumgermanid gehört einer großen Gruppe von Verbindungen der allgemeinen Formel TB_{2-x}^* an, die als gemeinsames strukturelles Merkmal eine tetragonale Unterzelle mit diamantartiger

^{*} T =Übergangsmetall, B =Al, Ga, Si, Ge, Sn, As.

Anordnung der *T*-Metallatome aufweisen^{4, 6, 7, 8}. Charakteristisch für diese Strukturen ist ferner die sehr unterschiedliche Vervielfachung der *c*-Achse bei gleichbleibender *a*-Achse. Eine Vervielfachung der *a*-Achse wurde bisher nur bei der speziellen Zusammensetzung T_2B_3 des Rutheniumgermanids beobachtet. Die Struktur des entsprechenden Stannids, Ru₂Sn₃, ist bereits bekannt⁹; sie weist jedoch eine in dieser Gruppe übliche Länge der *a*-Achse auf (a = 6,172 und c = 9,915 Å).

Experimenteller Teil

Die Proben wurden aus verpreßten Metallpulvern mit Hilfe eines Hochfrequenzofens erschmolzen und anschließend in evakuierten Quarzröhrchen bei 1000 °C homogenisiert. Von einem Kristall mit den Abmessungen $0,007 \times 0,005 \times 0,0025$ cm wurden Weissenbergaufnahmen mit ungefilterter CuK-Strahlung um die Achsen [001] und [100] der pseudotetragonalen Zelle angefertigt. Die (hk0)- und (0kl)-Reflexe wurden visuell durch Vergleich mit einer Schwärzungsskala geschätzt und mit den üblichen Lorentzund Polarisationsfaktoren korrigiert.

Bestimmung der Kristallstruktur

Die Einkristallaufnahmen zeigten einwandfrei tetragonale Lauesymmetrie (4/mmm) und die von Schwomma⁵ beschriebenen Auslöschungsgesetze: (hkl) nur mit h oder k = 2n, (hk0) nur mit h oder k = 4n und (0kl) nur mit k + l = 2n vorhanden. Die beiden ersten Bedingungen sind als Raumgruppenauslöschung allein nicht zu erklären. Zu einer zwanglosen Interpretation gelangt man jedoch durch die Annahme zweier sich überlagernder orthorhombischer Beugungsmuster (Abb. 1). Als Symmetrieelemente kommen für die Überlagerung die Diagonalebenen (110) bzw. (110) der tetragonalen Zelle in Betracht. Die daraus resultierende orthorhombische Elementarzelle — die bereits von Schwomma⁵ als die wahrscheinlichste erkannt wurde — besitzt nun folgende Abmessungen:

$$a = 5,718 (4),$$

 $b = 11,436 (8)$ und
 $c = 9,240 (6)$ Å.

Die nach der Transformation in die orthorhombische Indizierung verbleibenden Auslöschungsbedingungen sind nun alle erklärbar und führen direkt zur Raumgruppe Pnca- D_{2h}^{14} (0kl: k + l = 2n, h0l: l = 2n und hk0: h = 2n).

Für das erste Strukturmodell wurden die Ru-Atome auf den idealisierten Positionen der diamantartigen Unterzelle dieser Verbindungsgruppe untergebracht. Untersucht man nun die Anordnungsmöglichkeiten der Ge-Atome in einem durch a/2 begrenzten Ausschnitt dieser Unterzelle, so verbleibt aus sterischen Gründen nur so geringer Spielraum, daß hier in erster Näherung die Positionen der Struktur von $\operatorname{Ru}_2\operatorname{Sn}_3^9$ übernommen werden können. Offen bleibt jetzt lediglich die relative Anordnung dieser Gruppierungen zueinander, die in der Struktur von $\operatorname{Ru}_2\operatorname{Sn}_3$ durch die vierzähligen Inversionsachsen gegeben ist. In der rhombischen Zelle von $\operatorname{Ru}_2\operatorname{Ge}_3$ stehen zwei mögliche Varianten zur Verfügung: die zweizählige Achse (hier parallel zur *c*-Achse)

6	1	2	3	4	5	6	1	8	9	10	11	12	15	37	4 k	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	k
		Ũ		×		Ŭ		×				×				ļ	Ŭ	×	~	×		×	~	×	-0-	×		×	0	×	
1	¢			×				×				×				1	о	ø	0	¢	0	8	0	8	0	8	о	0	0	8	
				×				×				×				¥		×		×		×		×		×		×		×	
24	• •	0	0	۲	0	0	0	8	0	0	0	0	0	С		2	0	8	0	8	0	۲	0	0	0	0	0	0	0	€	
				×				×				×				¥		×		×		x		×		×		×			
3	((×				×				×				3	0	۲	0	0	0	0	0	8	0	8	0	€	o		
				×				×				×				×		×		×		×		×		×		×			
4	0	0	0	۵	٥	0	0	œ	0	0	0	ø				4	0	8	0	۲	0	0	0	0	0	8	0	ø			
				×				×								×		×		×		×		×		×					
5	ć			×				×								5	0	0	0	۵	0	8	0	8	0	8					
				×				×								¥		×		×		×		×							
6	0	0	0	۲	0	0	٥	8								6	٥	۲	0	ø	0	8	0	۲							
				×												×		×		×		×									
73	e I			×				(hi	<i>ŧ0,</i>	/						7	0	ø	0	8				(h)	k1)						
h																h															

Abb. 1. (hk0)- und (hk1)-Ebenen des pseudotetragonalen reziproken Gitters eines verzwillingten Kristalls von Ru₂Ge₃; die angegebenen Indices beziehen sich auf das durch Kreise gekennzeichnete Teilgitter, das zweite Teilgitter ist durch Kreuze markiert

verläuft durch den Ursprung oder durch $0, \frac{1}{4}, 0$. Es wurden beide Modelle gerechnet, wobei nur das letztere konvergierte. Die z-Parameter waren gegenüber jenen von Ru₂Sn₃ wegen des Symmetriezentrums um 3/16 zu vermindern; in der Aufstellung Pnca liegt das Symmetriezentrum nun in $\frac{1}{4}, \frac{1}{4}, 0$.

Einige Schwierigkeiten bereiteten noch die koinzidierenden Reflexe (vgl. Abb. 1). Für die erste Rechnung wurden alle von Koinzidenzen stammenden F_0 -Werte durch $\sqrt{2}$ dividiert, was einer Halbierung der Intensität entspricht. Diese Aufteilung der Intensitäten wurde für jede Verfeinerungsstufe mit dem jeweils letzten Verhältnis der Quadrate der berechneten Strukturamplituden der koinzidierenden Reflexe fortgeführt. Dieses Verfahren konvergierte ohne Schwierigkeiten bis zu einem *R*-Wert* von 0,091 für die beobachteten Reflexe. Die Ver-

* $R = (\Sigma \mid \mid F_0 \mid \dots \mid F_c \mid \mid) / \Sigma \mid F_0 \mid.$

1220 H. Völlenkle: Die Kristallstruktur von Ru₂Ge₃

feinerung wurde mit Fourier- und Differenz-Fourier-Projektionen nach den drei Achsenrichtungen durchgeführt. Die koinzidierenden Reflexpaare sind in Tab. 1a und b jeweils untereinander geschrieben und mit einer Klammer verbunden. Von den 38 (*hk*0)-Reflexen koinzidierten nur 24% und von den 74 (0*kl*)-Reflexen 47%, wobei die über-

h	k	l	$ F_0 $	$ F_c $	h	k	l	$ F_0 $	$ F_c $
2	0	0	290	245)	2	10	0	40	49
0	4	0	306	258	2	11	0	_	30
4	0	0	363	338j	2	13	0	147	180
0	8	0	364	339	2	14	0	42	57
6	0	0	484	492)	4	1	0	79	50
0	12	0	442	449	4	2	0	151	126
4	4	0	532	529j	4	3	0	135	114
2	8	0	535	532	4	4	0	532	529
6	4	0	213	235)	4	5	0	126	114
2	12	0	231	255	4	6	0	184	185
6	8	0	310	322)	4	7	0	152	141
4	12	0	324	336	4	8	0	269	277
0	2	0	30	$23^{'}$	4	9	0	48	50
0	6	0	90	85	4	10	0	52	59
0	10	0	122	116	4	11	0	42	47
0	14	0	77	90	6	1	0	37	30
2	1	0		4	6	2	0	60	78
2	2	0	56	50	6	3	0	121	102
2	3	0	205	207	6	4	0	213	235
2	4	0	628	640	6	5	0	48	55
2	5	0		2	6	6	0	153	146
2	6	0	52	46	6	7	0	67	65
2	7	0	136	141	6	8	0	310	322
2	9	0	77	89					

Tabelle 1 a. Beobachtete und berechnete Strukturamplituden für $\operatorname{Ru}_2\operatorname{Ge}_3$; (hk0)-Reflexe

lagernden (0kl)-Reflexe den kompletten (h0l)-Datensatz darstellen (Tab. 1b). Aus den letzten Differenzsynthesen erhält man eine durchschnittliche Standardabweichung von etwa 0,001 für die verfeinerten Atomparameter (Tab. 2).

Diskussion

Wie aus Abb. 2 hervorgeht, besteht zwischen den Strukturen der Phasen Ru_2Ge_3 und Ru_2Sn_3 eine ausgeprägte Ähnlichkeit. Die Abweichung der Ru-Atome von den idealisierten Lagen in der diamant-

				(0.00) 00100	(1000) 200,0				
h	k	l	$ F_0 $	$ F_c $	h	k	l	$ F_0 $	$ F_c $
0	2	2	290	241)	0	12	2	30	27)
1	0	2	227	188	6	0	2	172	157
0	2	4	156	126j	0	12	4	175	159j
1	0	4	189	153 <i>j</i>	6	0	4	85	78 j
0	2	6	253	ב 231	0	12	6	45	59j
1	0	6	385	351∫	6	0	6	103	135∫
0	2	8	152	126	0	14	2	122	137
1	0	8	145	121	7	0	2	109	<u>121</u> ∫
0	2	10	311	281)	0	0	2		10
1	0	10	156	141∫	0	0	4	57	40
0	4	0	267	258	0	0	6	337	337
2	0	0	252	244∫	0	0	8	449	460
0	4	2	58	61)	0	0	10	127	108
2	0	2	89	94∫	0	1	1		23
0	4	4	136	160	0	1	3	39	33
2	0	4	19	22∫	0	1	$\mathbf{\tilde{5}}$	327	285
0	4	6	228	207	0	1	7	149	105
2	0	6	206	187∫	0	1	9	—	19
0	4	8	388	378)	0	1	11	180	270
2	0	8	375	366f	0	2	0		24
0	4	10	57	57]	0	3	1		41
2	0	10	17	17∫	0	3	3	41	64
0	6	2	618	671	0	3	5	4 6	32
3	0	2	606	658)	0	3	7	158	143
0	6	4	215	184	0	3	9	195	206
3	0	4	216	186)	0	3	11	44	33
0	6	6	362	339	0	5	1	145	168
3	0	6	452	4245	0	5	3	99	98
0	6	8	105	106	0	5	5	106	89
3	0	8	211	213)	0	5	7		28
U	0	10	332	312	0	5	9	155	128
3	U O	10	211	198)	0	5	11		19
0	8	0	360	355	0	6	0	100	90
4	0	0	309	354	0	7	1	106	121
4	ð	2	107	94	0	7	3~~	189	210
4	0	2	229 155	202j	0	7	0 7	000	100
4	0	4	100	109	0	-	7	202	198
Ť	0	4 6	200 60	449) 62)	0	1	9	280	249
4	0	0 6	120	1907	0	9	1	198	199
Â.	8	8	967	266)	0	9	3 5	149	196
4	0	8	201	200	0	9	9 17	140	140 916
õ	10	2	284	286)	0	9 0	á	194	210
5	10	2	201	210	0	10	9 0	138	138
0	10	4	85	65)	õ	11	1	195	200
5	Õ	4	29	22	õ	11	3	62	49
0	10	$\overline{6}$	107	124)	ŏ	11	5	92	112
5	0	ĕ	165	192	ŏ	11	7	71	88
0	10	8	26	23)	ŏ	13	1		32
5	0	8	121	104	Õ	13	3	71	49
0	12	0	452	529	Ō	13	5	161	204
6	0	0	499	584	0	14	0	112	124
				,					

Tabelle 1 b. Beobachtete und berechnete Strukturamplituden für Ru_2Ge_3 ; (0kl)- und (h0l)-Reflexe

artigen Unterzelle beträgt in Ru₂Ge₃ maximal 0,14 Å, ein Wert, der z. B. unter der entsprechenden Abweichung in Rh₁₇Ge₃₃ mit 0,18 Å¹⁰ oder Ir₄Ge₅ mit 0,2 Å¹¹ liegt. Dies erklärt auch die große Neigung der Verbindung zur Zwillingsbildung, da sich das Ruthenium-teilgitter, fast unbeeinflußt von der Orientierung der Zwillingsindividuen, über

Abb. 2. Die Strukturen von Ru₂Sn₃ und Ru₂Ge₃, projiziert auf (001)

Atom	Punktlage	x	y	z
	4 (c)	0	0.25	0.930
Ru(2)	4 (c)	0	0,25	0,453
$\operatorname{Ru}(3)$	8 (d)	0,007	0,997	0,812
Ge (1)	8 (d)	0,161	0,078	0,566
Ge(2)	8 (d)	0,283	0,177	0,276
Ge(3)	8 (d)	0,350	0,113	0,902

 Tabelle 2. Atomparameter und Punktlagen für Ru₂Ge₃

 (Raumgruppe Nr. 60 Pnca)

den gesamten Bereich eines Kristallits erstreckt. Beschreibt man die Struktur als Viererschichtfolge eines pseudohexagonalen schichtförmigen Bauelements parallel (110) der tetragonalen Unterzelle^{6, 12}, so kann die Zwillingsbildung als Übergang auf ein enantiomorphes Schichtelement interpretiert werden.

Bei der Diskussion dieser Struktur drängt sich immer wieder die Frage auf, weshalb gerade bei Ru_2Ge_3 eine Verdoppelung der *a*-Achse auftritt und bei Ru_2Sn_3 nicht. Vergleicht man die interatomaren Abstände von Ru₂Ge₃ (Tab. 3) mit jenen von Ru₂Sn₃, so fällt besonders die Erhöhung der Koordinationszahl des Atoms Ru (3) von [6] in Ru₂Sn₃ auf [7] in Ru₂Ge₃ auf. Der Mittelwert über die Koordinationszahlen aller Ru-Atome erhöht sich damit von 6,5 auf 7,0. In Abb. 3 sind die mittleren Koordinationszahlen der *T*-Metalle der verfeinerten Struk-

Ru (1)—Ru (1)	3,13	2 imes	Ru (2)—Ru (2)	2,99	2 imes
$-\mathrm{Ru}(3)$	3,09	2 imes	Ru (3)	3,11	2 imes
Ge(2)	2,42	2 imes	Ge (1)	2,41	2 imes
Ge (3)	2,37	2 imes	Ge (1)	2,77	2 imes
Ge (3)	2,56	2 imes	Ge (2)	2,45	2 imes
			Ge (2)	2.92	2 imes
Ru (3)—Ru (1)	3,09		Ge (2) —Ru (1)	2,42	
$-\mathrm{Ru}(2)$	3,11		Ru (2)	2,45	
Ru (3)	3,08	2 imes	$\mathrm{Ru}(2)$	2,92	
Ge (1)	2,44		$-\mathrm{Ru}(3)$	2,56	
Ge (1)	2,61		$\mathrm{Ru}(3)$	2,56	
Ge (1)	2,65		—Ge (1)	2,84	
Ge (2)	2,56	2 imes	Ge (1)	2,99	
—Ge (3)	2,51	2 imes	—-Ge (1)	3,17	
Ge (3)	3,09		Ge (2)	2,99	
			Ge (3)	3,00	
			Ge (3)	3,06	
Ge (1)Ru (2)	2,41		$\operatorname{Ge}(3) \longrightarrow \operatorname{Ru}(1)$	2,37	
$-\mathrm{Ru}(2)$	2,77		$-\mathrm{Ru}(1)$	2,56	
-Ru (3)	2,44		$-\mathrm{Ru}(3)$	2,51	
$-\mathrm{Ru}(3)$	2,61		$-\mathrm{Ru}(3)$	2,51	
Ru (3)	2,65		$-\mathbf{Ru}$ (3)	3,09	
Ge (1)	3,11	2 imes	—Ge (1)	2,83	
—Ge (2)	2,84		-Ge(1)	2,88	
Ge (2)	2,99		—-Ge (1)	3,30	
Ge(2)	3,17		Ge (2)	3,00	
Ge (3)	2,83		Ge (2)	3,06	
Ge (3)	2,88		Ge (3)	3,40	2 imes
Ge (3)	3,30				

Tabelle 3. Interatomare Abstände [Å] für Ru_2Ge_3 (< 3,5 Å)

turen dieser Verbindungsgruppe gegen die Zusammensetzung 2-xaufgetragen. Bei der Berechnung der Koordinationszahlen wurden dabei nur B-Metall-Atome berücksichtigt, deren Abstand zum Zentralatom nicht größer als die um 10% erhöhte Summe der Metallradien nach Pauling¹⁴ ist. Wie aus Abb. 3 zu erkennen ist, fügt sich das Rutheniumgermanid mit der mittleren K. Z. von 7,0 glatt in den Kurvenverlauf ein, während das Stannid deutlich unterhalb liegt. Dieser Effekt findet eine einfache Erklärung, wenn man die Abhängigkeit der K. Z. vom Radienquotienten r_T/r_B berücksichtigt: die im Bereich der Kurve liegenden Verbindungen weisen einen Quotienten von 0,92–0,98 auf, Ru₂Sn₃ hingegen von 0,82 und das ebenfalls etwas abweichende Cr₁₁Ge₁₉ von 0,88.

Entscheidend dürfte nun sein, daß der Ru₂Sn₃-Typ wegen der nur 2fachen c-Achse und der relativ hohen tetragonalen Symmetrie

Abb. 3. Mittlere Koordinationszahl der Übergangsmetallatome gegenüber den B-Gruppen-Elementen in Verbindungen des Typs TB_{2-x} , aufgetragen gegen 2-x

	a [Å]	<i>b</i> [Å]	c [Å]	Literatur
Ru ₂ Si ₃	5,537(4)	11,074 (8)	8,954 (5)	4,6
Ru ₂ Ge ₃	5,718(4)	11,436 (8)	9,240(6)	6, 12
Os ₂ Si ₃	5,579	11,158	8,962	13
Os ₂ Ge ₃	5,755	11,511	9,267	7
$Ir_2(Ga_{0.6}Ge_{0.4})_3$	5,722(3)	11,444 (6)	9,360 (5)	6, 12

Tabelle 4. Gitterparameter der isotypen Verbindungen T_2B_3 (T = Ru, Os, Ir; B = Si, Ge, Ga)

auf die beobachtete mittlere K. Z. von 6,5 praktisch festgelegt ist. Die für die Anpassung der K. Z. an größere Radienquotienten erforderliche Flexibilität wird im Ru₂Ge₃-Typ offenbar durch die Überstruktur mit 2facher *a*-Achse erreicht. Eine strukturelle Alternative stellt natürlich eine Erhöhung der Vervielfachung der *c*-Achse bei geringfügig geänderter Zusammensetzung dar: Ru(Ga_{0,05}Ge_{0,95})_{1,507} (c = 319,0 Å) oder Rh(Ga_{0,5}Ge_{0,5})_{1,487} (c = 181,9 Å)^{6, 12}.

Die Kristallstruktur von Ru₂Ge₃

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h	Ŀ	1	$10^3 \cdot \sin^2 \theta$	$10^3 \cdot \sin^2 \theta$	Intensität			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<i>ĸ</i>	i	ber.	beob.	ber.	beob.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	1	11,3	11,3	< 0,5	ss		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	29,4	29,5	1	s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	2	2	45,2	45.2	66	et.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	2	45,2	40,2	00	50		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	2	49,7	50,0	1	\mathbf{s}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1	3	65,5	65.5	2	\mathbf{ms}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3	1	65,7)		8.0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	0	72,5	72,4	33	\mathbf{mst}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	U 9	0	72,5	0~0	9			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	3 0	2	86,0	85,9		ms		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2 1	0 1	97,2	97,0	10	m		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4 9	1	97,4	97,5	14	m		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\tilde{2}$	õ	2	99 6)					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	4	$\frac{1}{2}$	99.6	100,3	1	\mathbf{ss}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	3	0	113.2	113.1	2	\mathbf{ms}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	2	117,7)	117 0	100			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2	2	117,7	117,6	100	sst		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	5	1	120,0	119,8	1	\mathbf{ms}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	4	126,5	196.9	1	C		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	2	4	126,5∫	120,2	1	3		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	4	131,0	130,6	1	\mathbf{s}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2	4	144,6	144.7	92	\mathbf{sst}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4	0	145,0)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4	1	151,7	151,6	2	\mathbf{ms}		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	5	173,8	170.0	5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 9	9 9	0 9	174,2	173,0	Э	ms-a		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	3 4	3 1	190.8	181.0	1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6	± 1	188.0)	101,0	1	8		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\overset{\circ}{2}$	1	188.0	188,2	2	s		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	6	$\tilde{2}$	190.2)	100.1	0-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0	2	190,2	190,1	37	\mathbf{mst}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5	3	192,3'	192,2	1	SS		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	1	2	194,7	194,5	< 0,5	SS		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	6	2	208,3)	209.0	1	99		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	2	2	208,3	200,0	T	96		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3	5	228,2	228.1	1	s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	1	3	228,6		-	2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	235,6	235,3	< 0,5	ss		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2	D A	1	242,3	242,7	1	88		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4 9	1 5	242,3 j 250.0					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	4	5	259.9	258,6	3	\mathbf{ms}		
0 2 6 261,9 8 m	ĩ	Ō	6	261.9)	A A I -				
	0	2	6	261.9	261,9	8	\mathbf{m}		

Tabelle 5. Auswertung einer Pulveraufnahme von $Ir_2(Ga_{0,6}Ge_{0,4})_3$ (Guinierkamera, CuK α_1 -Strahlung)

h	h	$10^3 \cdot \sin^2 \theta$	$10^3 \cdot \sin^2 heta$	$10^3 \cdot \sin^2 \theta$	Intensität		
	к 	<i>u</i>	ber.	beob.	ber.	beob.	
2	6	2	262,7	262,7	9	m	
3 1	4 7	$rac{2}{2}$	$262,7 \atop 267,2$	267,4	1	s	
$\frac{0}{3}$	6 0	4 4	271,4 271.4	271,2	1	ss	
2	3	5	282,6	282,6	1	\mathbf{ms}	
1	6	3 4	282,9 289,6				
$\frac{3}{0}$	$\frac{2}{8}$	4 0	289,6 289,9	289,3	30	\mathbf{mst}	
4	0	0	289,9				

Tabelle 5 (Fortsetzung)

Isotype Verbindungen

In Tab. 4 sind die mit Ru₂Ge₃ isotypen Verbindungen zusammengestellt. Die Radienquotienten aller Verbindungen liegen im Bereich von 0,93—0,98. Für Ru₂Si₃ und Os₂Si₃ ist die Isotypie durch Einkristallaufnahmen gesichert^{4, 5}; für Os₂Ge₃ und Ir₂(Ga_{0,6}Ge_{0,4})₃ wurde sie an Hand einer Intensitätsrechnung für ein Pulverdiagramm mit den Atomparametern von Ru₂Ge₃ nochmals kontrolliert und bestätigt gefunden. In Tab. 5 ist die Auswertung einer *Guinier*aufnahme von Ir₂(Ga_{0,6}Ge_{0,4})₃ wiedergegeben; die für die Überstruktur entscheidenden Reflexe besitzen ungerade Indices k.

Für die wohlwollende Förderung dieser Art bin ich Herrn Prof. Dr. A. Wittmann zu Dank verpflichtet.

Herrn Dr. O. Schwomma danke ich für die Überlassung der Unterlagen seiner seinerzeitigen Untersuchungen.

Weiters danke ich der Oesterreichischen Nationalbank, durch deren Unterstützung wissenschaftliche Geräte angeschafft werden konnten.

Die Rechenarbeiten wurden an der Rechenanlage IBM 7040 des Rechenzentrums der Technischen Hochschule Wien durchgeführt.

Literatur

- ¹ H.J. Wallbaum, Naturwissensch. 32, 76 (1944).
- ² E. Raub und W. Fritzsche, Z. Metallkde. 53, 779 (1962).
- ³ J. H. Buddery und A. J. E. Welch, Nature [London] 167, 362 (1951).
- ⁴ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 94, 681 (1963).
- ⁵ O. Schwomma, Dissertation, Univ. Wien, 1964.

1226

- ⁶ H. Völlenkle, A. Preisinger, H. Nowotny und A. Wittmann, Z. Kristallogr. 124, 9 (1967).
- ⁷ G. Flieher, H. Völlenkle und H. Nowotny, Mh. Chem. 99, 2408 (1968).
- ⁸ W. B. Pearson, Acta Cryst. [Kopenhagen] B 26, 1044 (1970).
- ⁹ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 95, 1538 (1964).
- ¹⁰ W. Jeitschko und E. Parthé, Acta Cryst. [Kopenhagen] 22, 417 (1967).
- ¹¹ G. Flieher, H. Völlenkle und H. Nowotny, Mh. Chem. 99, 877 (1968).
- ¹² H. Völlenkle, A. Wittmann und H. Nowotny, Mh. Chem. 97, 506 (1966).
- ¹³ O. Schwomma, H. Nowotny und A. Wittmann, Mh. Chem. 94, 924 (1963).
- ¹⁴ L. Pauling, Die Natur der chemischen Bindung. Weinheim: Verlag Chemie. 1968.

Dr. H. Völlenkle Institut für Mineralogie, Kristallographie und Strukturchemie Technische Hochschule Wien Getreidemarkt 9 A-1060 Wien Österreich